首页 > 生活百科 > 健身运动 > 初中物理教学研究报告

初中物理教学研究报告

时间:2016-02-11   来源:健身运动   点击:

【www.gbppp.com--健身运动】

初中物理教学研究报告(一):中学物理教学研究报告

带电粒子在匀强磁场中的运动教学案例及报告

一、教学目标

(一)知识与技能

1、理解洛伦兹力对粒子不做功.

2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀磁场中做匀速圆周运动.

3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题. 知道质谱仪的工作原理。

4、知道回旋加速器的基本构造、工作原理 、及用途 。

(二)过程与方法

通过综合运用力学知识、电磁学知识解决带电粒子在复合场(电场、磁场)中的问题.

培养学生的分析推理能力.

(三)情感态度与价值观

通过对本节的学习,充分了解科技的巨大威力,体会科技的创新历程。

二、重点与难点:

重点:带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能用来分析有关问题.

难点:1.粒子在洛伦兹力作用下做匀速圆周运动.

2.综合运用力学知识、电磁学知识解决带电粒子在复合场中的问题.

三、教具:洛伦兹力演示仪、感应线圈、电源、多媒体等

四、教学过程:

(一)复习引入

[问题1]什么是洛伦兹力?[磁场对运动电荷的作用力]

[问题2]带电粒子在磁场中是否一定受洛伦兹力?[不一定,洛伦兹力的计算公式为F=qvBsinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,F=qvB;当θ=0°时,F=0.]

[问题3]带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习——带电粒子在匀强磁场中的运动、质谱仪.

(二)新课讲解---带电粒子在匀强磁场中的运动

【演示】先介绍洛伦兹力演示仪的工作原理,由电子枪发出的电子射线可以使管内的低压水银蒸气发出辉光,显示出电子的径迹。后进行实验.

教师进行演示实验.

[实验现象]在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形.

[教师引导学生分析得出结论]

当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动.

带电粒子垂直进入匀强磁场中的受力及运动情况分析(动态课件).

一是要明确所研究的物理现象的条件----在匀强磁场中垂直于磁场方向运动的带电粒子。二是分析带电粒子的受力情况,用左手定则明确带电粒子初速度与所受到的洛伦兹力在同一平面内,所以只可能做平面运动。三是洛伦兹力不对运动的带电粒子做功,它的速率不变,同时洛伦兹力的大小也不变。四是根据牛顿第二定律,洛伦兹力使运动的带电粒子产生加速度(向心加速度)

[出示投影]

①.电子受到怎样的力的作用?这个力和电子的速度的关系是怎样的?(电子受

到垂直于速度方向的洛伦兹力的作用.)

②.洛伦兹力对电子的运动有什么作用?(.洛伦兹力只改变速度的方向,不改变

速度的大小)

③.有没有其他力作用使电子离开磁场方向垂直的平面?(没有力作用使电子离

开磁场方向垂直的平面)

④.洛伦兹力做功吗?(洛伦兹力对运动电荷不做功)

1.带电粒子在匀强磁场中的运动

(1)、运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功.

【注意】带电粒子做圆周运动的向心力由洛伦兹力提供。

通过“思考与讨论”,使学生理解带电粒子在匀强磁场中做匀速圆周运动,的轨道半径r和周期T与粒子所带电量、质量、粒子的速度、磁感应强度有什么关系。

[出示投影]

一为带电量q,质量为m ,速度为v的带电粒子垂直进入磁感应强度为B的匀强磁场中,其半径r和周期T为多大?

[问题1]什么力给带电粒子做圆周运动提供向心力?[洛伦兹力给带电粒子做圆周运动提供向心力] [问题2]向心力的计算公式是什么?[F=mv2/r]

v2

[教师推导]粒子做匀速圆周运动所需的向心力F=mr

r由此得出r=是由粒子所受的洛伦兹力提供的,所以 qvB=mv2/ mv2r2m2m T=可得T= vqBqBqB

(2)、轨道半径和周期

带电粒子在匀强磁场中做匀速圆周运动的轨道半径及周期公式.

1、轨道半径r =

【说明】:

(1)轨道半径和粒子的运动速率成正比.

(2)带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关.

【讨论】:在匀强磁场中如果带电粒子的运动方向不和磁感应强度方向垂直,它的运动轨道是什么样的曲线?

分析:当带电粒子的速度分别为垂直于B的分量v1和平行于B的分量v2,因为v1和B垂直,受到洛伦兹力qv1B,此力使粒子q在垂直于B的平面内做匀速圆周运动,v1和B平行,不受洛伦兹力,故粒子在沿B方向上做匀速曲线运动,可见粒子的运动是一等距螺旋运动.

再用洛伦兹力演示仪演示

[出示投影课本例题]

如图所示,一质量为m,电荷量为q的粒子从容器A下方小孔S1飘

入电势差为U的加速电场,然后让粒子垂直进入磁感应强度为B

的磁场

mv 2、周期T =2πm/ qB qB

中,最后打到底片D上.

(1)粒子进入磁场时的速率。

(2)求粒子在磁场中运动的轨道半径。

解:(1)粒子在S1区做初速度为零的匀加速直线运动.由动能定理知,粒子在电场中得到的动能等于电场对它所做的功,即 1mv2qu 2

由此可得v=2qu/m.

v2(2)粒子做匀速圆周运动所需的向心力是由粒子所受的洛伦兹力提供,即qvB=mr

所以粒子的轨道半径为 r=mv/qB=2mu/qB2

[教师讲解]r和进入磁场的速度无关,进入同一磁场时,r∝

测量,那么,我们可以用装置来测量比荷或算出质量。 mq,而且这些个量中,u、B、r可以直接

例题在处理上,可以让学生自己处理,教师引导总结。为了加深对带电粒子在磁场中的运动规律的理解,可以补充例题和适量的练习。注意:在解决这类问题时,如何确定圆心、画出粒子的运动轨迹、半径及圆心角,找出几何关系是解题的关键。

例题给我们展示的是一种十分精密的仪器------质谱仪

补充例题: 如图所示,半径为r的圆形空间内,存在着垂直于纸面向里的匀

强磁场,一个带电粒子(不计重力),从A点以速度v0垂直磁场方向射入磁场中,

并从B点射出,已知∠AOB=120°,求该带电粒子在磁场中运动的时间。

分析:首先通过已知条件找到

出几何图形。

解:设粒子在磁场中的轨道半径为R,粒子的运动轨迹及几何图形如图所示。

粒子在磁场中做匀速圆周运动的向心力由洛伦兹力提供,

有qvB=mv2/R ①

由几何关系有:R = r tan60º ②

粒子的运动周期T =2πR/v0 ③【初中物理教学研究报告】

由图可知θ=60°,得电粒子在磁场中运动的时间 t = T/6 ④

联立以上各式解得:t=

(3)、质谱仪

阅读课文及例题,回答以下问题:

1.试述质谱仪的结构.

2.试述质谱仪的工作原理.

3.什么是同位素?

所对应的圆心O′,画出粒子的运动轨迹并画rπ/3v0

4.质谱仪最初是由谁设计的?

5.试述质谱仪的主要用途.

阅读后学生回答:

1.质谱仪由静电加速极、速度选择器、偏转磁场、显示屏等组成.

2.电荷量相同而质量有微小差别的粒子,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片不同的地方,在底片上形成若干谱线状的细条,叫质谱线,每一条对应于一定的质量,从谱线的位置可以知道圆周的半径r,如果再已知带电粒子的电荷量q,就可算出它的质量.

3.质子数相同而质量数不同的原子互称为同位素.

4.质谱仪最初是由汤姆生的学生阿斯顿设计.

5.质谱仪是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.---

----(1课时)

【过渡语】先从研究物质微观结构的需要出发提出怎样大量产生高能带电粒子的问题,从而引出早期使用的加速器——静电加速器

2.回旋加速器

(1)直线加速器

①加速原理:利用加速电场对带电粒子做正功使带电的粒子动能增加,即qU =ΔEk

②直线加速器的多级加速:教材图3.6—5所示的是多级加速装置的原理图,由动能定理可知,带电粒子经N级的电场加速后增加的动能,ΔEk=q(U1+U2+U3+U4+…Un)

③直线加速器占有的空间范围大,在有限的空间内制造直线加速器受到一定的限制。

(2)回旋加速器

①由美国物理学家劳伦斯于1932年发明。

②其结构教材图3.6—6所示。核心部件为两个D形盒(加匀强磁场)和其间的夹缝(加交变电场) ③加速原理:通过“思考与讨论”让学生自己分析出带电粒子做匀速圆周运动的周期公式T = 2πm/q B,明确带电粒子的周期在q、m、B不变的情况下与速度和轨道半径无关,从而理解回旋加速器的原理。

在学生思考之后,可作如下的解释:如果其他因素(q、m、B)不变,则当速率v加大时,由r=mv/qB得知圆运动半径将与v成正比例地增大,因而圆运动周长2r

此运动一周的时间(周期)仍将保持原值。

了伏笔。

老师再进一步归纳各部件的作用:(如图)

磁场的作用:交变电场以某一速度垂直磁场方向进入匀强磁场后,在洛伦兹力的作用下做匀速圆周运动,其周期在q、m、B不变的情况下与速度和轨道半径无关,带电粒子每次进入D形盒都运动相等的时间(半个周期)后平行电场方向进入电场加速。

电场的作用:回旋加速器的的两个D形盒之间的夹缝区域存在周期性

变化的并垂直于两个D形盒正对截面的匀强电场,带电粒子经过该区域时

被加速。

交变电压的作用:为保证交变电场每次经过夹缝时都被加速,使之能

量不断提高,须在在夹缝两侧加上跟带电粒子在D形盒中运动周期相同的

交变电压。

带电粒子经加速后的最终能量:(运动半径最大为D形盒的半径R)

2mv也将与v成正比例地增大,因qB最后提到了回旋加速器的效能(可将带电粒子加速,使其动能达到25 MeV~30 MeV),为狭义相对论埋下

由R=mv/qB有 v=qBR/m 所以最终能量为 Em=mv2/2 = q2B2R2/2m

讨论:要提高带电粒子的最终能量,应采取什么措施?(可由上式分析)

例:1989年初,我国投入运行的高能粒子回旋加速器可以把电子的能量加速到2.8GeV;若改用直线加速器加速,设每级的加速电压为U =2.0×10V,则需要几级加速?

解:设经n级加速,由neU=E 有 n=E/eU=1.4×104(级)

(三)对本节要点做简要小结.

(四)巩固新课:1、复习本节内容

3、完成“问题与练习” 5

总结报告:在本次的教学中,我采用问答式、以学生学习为主,教师引导为辅的教学思路,相比于传统的教师教学生学式的学习方式,这种探究性的学习方式显然要强的多,学生主动性增强啦,更善于动手动脑啦,学习是应该在已知的基础上学习新知识,学习内容,更要学会学习的方法,教案设计保留了传统教案的一些优点,采用了问题讨论式探究的模式,通过精心创设情景,一路与学生一起摸索,相互讨论,得出结论,再引发新的问题,从而加深学生对磁场这一知识的理解和掌握。本节内容,运动电荷在磁场中的运动所受的洛伦兹力的特点,知道运动电荷在垂直进入磁场中的时,将做匀速圆周运动,而高一时候我们讲过圆周运动的解题思路过,所以在复习圆周运动的基础上,找出运动电荷在磁场中的运动的解题思路,正所谓温故而知新。效果显然不错,这样学生也会记忆更牢固。

初中物理教学研究报告(二):初中物理课题中期研究报告

初中物理课题中期研究报告

初中物理课题中期研究报告

一、问题的提出

目前农村初中教学中存在了很多问题,客观上成绩比较优秀的学生大部分到了城区学校,留下来的大多数都是基础薄弱、学习习惯不好的学生,因此农村>物理教学面临学生怕学、老师难教的现状,要提高学生学习能力,必须更新教育理念,优化教育资源,改进教学方法,提高学习兴趣,使学生喜欢物理,

学懂物理,乐于学习物理。“快乐物理”课题研究势在必行。

二、研究目标

1、创建积极的课堂环境和民主和谐的学习氛围,让学生在快乐的课堂中勇于质疑、提问,从而能积极主动的投入到课堂教学中。

2、学生在教师的鼓励和监督下逐渐的养成积极主动的学习态度,从而进一步培养学生的创新精神和学生的发散性思维。

3、通过本课题的研究,进一步转变教师的教育观念和教学行为,牢固树立以学生的发展为本和为学生奠定终身学习必备的基础知识和基本技能的大教育观。

三、课题研究的理论基础

我们传统的教学方式已经不适应新的教学要求,也落后于学生的身心发展,以前单

一、被动和陈旧的学习方式,已经严重影响>素质教育的推进,当然也难指望学生成为一个高素质的人,也无法使他具备创新精神和创新能力。针对社会经济以及各方面突飞猛进的发展,那么我们对教育的方式和对学生的培养也应该转变观念,把传统的传授知识为主改为传授学习方法和知识并重,既重视知识培养又重视技能的培养,更不能忽略情感的培养。

现代学习方式是以弘扬人的主体性为宗旨、以促进人的可持续性发展为目的的一种开放系统,主动性是现代学习方式的首要特征,它对应于传统学习方式的被动性,由“要我学”变为“我要学”。我要学是基于学生对学习的内在需要,要我学则是基于外在的诱引和强制,俗话说“强扭的瓜不甜”,学生在逼迫的状态下被动地学习,学生把学习当成一种负担,其学习效果必定是事倍功半。相反,如果学生对学习有兴趣,那么他们就会积极主动地去学习,他就会把学习当成是一种享受,他就越学越想学、越爱学,因此有兴趣的学习事半功倍。从现代学习方式的方面来讲,通过快乐物理教学培养学生主动学习的习惯是十分必要的。

四、本课题研究的内容及过程

(一)、培养学生学习物理的兴趣,让学生发现快乐。

不少学生都有这样的体验:只要自己喜欢的学科,我就一定能把它学好。但是也有不少学生有这样的经历,自己的确很喜欢物理,可物理成绩老是上不去,这是什么原因呢?也有部分学生虽然不太喜欢物理,但是学习起来还比较顺利。我相信我们每一位教师都碰到过。经过调查持有第一种说法的学生,他们喜欢物理并且能学习好物理的主要原因有:1、教师幽默风趣,知识渊博,教学水平高;2、学生的学习方法科学,学习习惯良好;3、受到家庭中他所信赖的某个成员的职业行为与物理有关、相关或相近的潜移默化的影响较大;4、受到某位科学家的影响;5、物理本身的趣味性,以及它与生活、生产和科学技术应用实际联系的紧密性,在他们的心里产生了积极的影响。

持有第二种看法的同学,他们喜欢物理主要原因是物理本身的趣味性和实用性的强烈吸地引着他们。他们学习物理有困难的原因主要有:1、缺乏正确的方法;2、教师的教学存在某些缺陷;3、过高的要求与学生自己实际的学习能力和水平的差距较大。

持有第三种说法的学生,其实他们的各学科的成绩均不错,只是他们的兴趣不在物理这门学科上而已。

针对以上的问题我们教师必须从不同的方面采取不同方法;针对不同的学生采取不同的方法;做到有的放矢,起到事半功倍的效果。

本文来源:http://www.gbppp.com/sh/207923/

推荐访问:

热门文章