首页 > 教育知识 > 读后感大全 > 新品多久能获得猜你喜欢的流量

新品多久能获得猜你喜欢的流量

时间:2017-04-15   来源:读后感大全   点击:

【www.gbppp.com--读后感大全】

新品多久能获得猜你喜欢的流量(一):淘宝新店新品如何获取官方扶持的流量

淘宝新店新品如何获取官方扶持的流量?

要流量就要推广,既然是推广就是为了获取流量,把流量转化为销量,达到最终盈利的目的。淘宝流量主要分为两种:站内流量和站外流量。

淘宝站内流量:聚集在淘宝网上的所以流量,这对于淘宝卖家而言是主要的流量渠道。我们希望从淘宝的几千万乃至上亿流量中分得一点点到我们的店铺和宝贝页面。淘宝站外流量,也就是除了淘宝网以外的所有互联网上的可以为你所用的流量。

流量主要分为两种:免费流量和收费流量,获取流量最重要的方式就是推广;推广主要分为两种:站内推广(免费加付费)、站外推广(免费加付费)。下面就讲讲站内一些性价比较高的流量渠道:

一、巧用新品标签,引爆单品

情景一:去年6月份,我用两皇冠C店上架了几款女装,上架之后,出现新品标签,为了让销量破零,人为操作销量和收藏。第三天把爆发了,类目流量暴涨,一天类目流量达5000UV,当天单款成交100多单。

情景二:今年5月份,淘宝首页全面改版,用自己的小C店上传了几个宝贝,新品标签出现,跟去年一样的操作手法,三天类目流量猛涨,虽然没有去年流量猛,实践证明,这种操作手法是可行的。

【新品多久能获得猜你喜欢的流量】

可是目前大家对新品标签的作用还不太了解,我后面分析了下出现在类目首页的几个权重是什么?为了让大家更好的了解在哪个位置展示,我截图给大家展示。【新品多久能获得猜你喜欢的流量】

淘宝首页主题市场,百万级流量入口,能在此入口分得一杯羹,想想都流口水。

【新品多久能获得猜你喜欢的流量】

默认排序,第一行是直通车推广位,第二行才是新品标签展示位。依次排过去,销量、人气、信用、总价都是以新品标签为基础。大家都知道自然搜索页面的综合排序方式,其实这边的道理也一样的。只是周期不一样,这边的新品是14天,就是说,出现在新品页面的宝贝,越接近14天结束,越靠前。偶尔也会有轮播,直到结束新品标签。

除了新品标签之外,还有需要具备哪些权重呢?

1、流量,发布宝贝出现新品标签,果断注入流量,保证流量干净和流量的多元化。

2、收藏,有流量的基础,适当的增加收藏。保证收藏渠道的多元化。

3、转化,有流量,有收藏,保证正常的转化,整个宝贝权重较高。

在计算这些权重的数据,最后还是很难得到一个整确固定的数据,具体是多少流量,多少收藏,多少转化,还不得知。大家按这样操作,总能发现一些惊喜。所以想分得一杯羹也不难,大家赶紧行动起来吧。

二、类目首页扶持关键词,流量不要太多

淘宝改版之后,这类流量入口也减少了很多,但目前还是有很多大的几个入口。大家看图

【新品多久能获得猜你喜欢的流量】

这是淘宝首页直达入口的二级页面,流量相当可观,大家再看仙女这个关键词淘宝指数数据吧。

“仙女”

这个关键词在5

月14号,流量和成交井喷。大家看到了吗?这个很简单,大家要经常看看淘宝首页,类目首页,经常有扶持的关键词。第一时间优化好。流量不等人,页面更新频率大,你也要跟上节奏哦!

三、玩客,流量是玩起来的

淘玩客(

薅羊毛是一个比较活跃的小栈,主要是一些性价比较高的产品,也是获取流量较多的地方。铁扇公主是该小栈的小二,如果你比较活跃,且提供的产品性价比高,他给到的资源也很多。这是勾搭小二的节奏!每天爆料发帖,每天玩玩,也能换来几百个UV,,这是一个性价比很高的流量渠道,只需要一点点人力投入。产品好的话还能上一淘首页。一天流量至少5000个UV。

四、无线端流量怎么拿?【新品多久能获得猜你喜欢的流量】

虽然不是研究无线端流量方面的高手,我也发表一下个人的一些心得。总结了几个比较重要的权重。

1、销量,肯定有一定的销量,在手机端才靠前的机会,否则一切扯淡。

2、上下架和橱窗推荐,个人觉得无线端的排名方式跟PC端差不多,先把PC端优化好,我们可以发现在PC端排名靠前的产品,在无线端也是靠前的。

3、淘金币活动和手机端折扣设置。

所以,我总结一下,销量大的产品靠前,前提是没有降权的;然后是接近下架时间;最后是淘金币活动和手机端折扣设置。

我手机端的流量,很稳定,想要很大的突破也比较难。维持在一个水平线上。转化偏低,跟购物体验和价格是有关系的,比较正常。我对小C店有这样的流量还是比较满意的。没有更高的追求了。

五、麦麦如何实现联合营销获取大流量

新品多久能获得猜你喜欢的流量(二):猜你喜欢

【新品多久能获得猜你喜欢的流量】

“猜你喜欢”是怎么猜中你心思的? ccyou 2012-11-12 15:54:04 现在人们上网购物都习惯了系统给出的“猜你(还会)喜欢”,有时候它好像比你自己都还要了解你。推 荐系统究竟是怎样“猜”中你心思的呢? 分享到: 新浪微博 人人 豆瓣 QQ 空间 腾讯微博 (文/Joseph A. Konstan & John Riedl)如今,到网上购物的人已经习惯了收到系统为他 们做出的个性化推荐。 Netflix 会推荐你可能会喜欢看的视频。 TiVo 会自动把节目录下来, 如果你感兴趣就可以看。 Pandora 会通过预测我们想要听什么歌曲从而生成个性化的音乐流。 所有这些推荐结果都来自于各式各样的推荐系统。 它们依靠计算机算法运行, 根据顾客的浏 览、搜索、下单和喜好,为顾客选择他们可能会喜欢、有可能会购买的商品,从而为消费者 服务。 推荐系统的设计初衷是帮助在线零售商提高销售额, 现在这是一块儿规模巨大且不断 增长的业务。与此同时,推荐系统的开发也已经从上世纪 90 年代中期只有几十个人研究, 发展到了今天拥有数百名研究人员, 分别供职于各高校、 大型在线零售商和数十家专注于这 类系统的其他企业。 这些年来,推荐系统有了相当的进展。开始时它们还相对较为粗糙,往往对行为做出不准确 的预测; 但随着更多的和不同类型的网站用户数据变得可用, 推荐系统得以将创新算法应用 于这些数据之上,它们迅速得到了改善。今天,推荐系统都是些极其复杂和精专的系统,常 常看起来比你自己还要了解你。同时,推荐系统正在向零售网站以外的领域拓展:大学用它

们来引导学生选课, 移动电话公司靠它们来预测哪些用户有可能转投另一家供应商, 会议主 办方也测试过用它们来分配论文给审稿专家。 我们两人从推荐系统的早期开始便一直在开发和研究它们, 最初是以学术研究者的身份, 参 与 GroupLens 计划(GroupLens Project)。1992 年起,GroupLens 通过对美国兴趣论坛 网站 Usenet 讨论区里的消息进行排序, 将用户指向他们可能会感兴趣、 但自己尚未发现的 话题线索。几年以后,我们成立了 Net Perceptions,这是一家推荐算法公司,在互联网第 一次热潮期间(1997 年 - 2000 年),一直处于业界领先地位。有鉴于此,虽然这些公司 极少公开谈论他们的推荐系统是如何运作的, 我们的经验使我们能够深入了解亚马逊和其他 在线零售商幕后的情景。 (在本文中,我们的分析是在观察和推理的基础上得出的,不包含 任何内部消息)。 下面就是我们所看到的。 推荐算法是怎么“猜你喜欢”的? 来源:recommenderapi.com 你有没有想过自己在亚马逊眼中是什么样子?答案是: 你是一个很大、 很大的表格里一串很 长的数字。 这串数字描述了你所看过的每一样东西, 你点击的每一个链接以及你在亚马逊网 站上买的每一件商品; 表格里的其余部分则代表了其他数百万到亚马逊购物的人。 你每次登 陆网站, 你的数字就会发生改变; 在此期间, 你在网站上每动一下, 这个数字就会跟着改变。

这个信息又会反过来影响你在访问的每个页面上会看到什么, 还有你会从亚马逊公司收到什 么邮件和优惠信息。 许多年来, 推荐系统的开发者试过用各种各样的方法来采集和解析所有这些数据。 最近这段 时间, 多数人都选择使用被称为个性化协同推荐 (Personalized Collaborative Recommender) 的算法。这也是亚马逊、Netflix、Facebook 的好友推荐,以及一家英国流行音乐网站 Last.fm 的核心算法。说它 “个性化”,是因为这种算法会追踪用户的每一个行为(如浏 览过的页面、订单记录和商品评分),以此进行推荐;它们可不是瞎猫碰上死耗子——全凭 运气。说它 “协同”,则是因为这种算法会根据许多其他的顾客也购买了这些商品或者对 其显示出好感, 而将两样物品视为彼此关联, 它不是通过分析商品特征或者关键词来进行判 断的。 不同类型的个性化协同推荐系统最晚从 1992 年开始便已经出现。除了 GroupLens 计划, 另一项早期的推荐系统是 MIT 的 Ringo,它会根据用户的音乐播放列表从而给用户推荐其 他他们有可能会喜欢的音乐。 User-User 算法:计算用户之间的相似度 GroupLens 和 Ringo 都使用了一种简单的协同算法,被称为 “用户关联”(user-user) 的算法。这种类型的算法会计算一对用户之间的 “距离”,根据的是他们对同一物品打分 的相似程度。 举例来说, 如果吉姆和简都给 《电子世界争霸战》 (Tron) 这部电影打了 5 分, 那么他们之间的距离就是 0。如果吉姆给它的续集《创:战纪》(Tron: Legacy )这部电 影打了 5 分,而简只打了 3 分,那么他们之间的距离就变大了。按照这样的计算得出来品 味相对 “靠近” 的用户,我们把他们称之为共有一个 “邻集”(neighborhood)。 但是,这种用户关联的策略效果并不是很好。首先,形成有意义的邻集很难:很多用户两两 之间只有很少几个共同评分,有的就完全没有;而仅有的那几个都打了分的项目呢,往往是 票房大片,基本上人人都喜欢的那种。再来,由于用户之间的距离可以变得很快,算法必须 当场就进行大部分的计算; 而这可能会比一个在网站上这儿点点那儿戳戳的人下一个动作发 出之前需要更久的时间。 Item-Item 算法:计算物品之间的关联 因此,大部分的推荐系统如今都依靠一种“物-物关联”(item-item)的算法,这种算法计 算的是两本书、 两部电影或者两个其他什么东西之间的距离, 依据的是给它们打过分的用户

的相似度。 喜欢 Tom Clancy 书的人很可能会给 Clive Cussler 的作品打高分, 因此 Clancy 和 Cussler 的书就共处一个邻集。一对物品之间的距离可能是根据成百上千万的用户的评 分计算得出,在一段时间里往往保持相对稳定,因此推荐系统可以预先计算距离,并更快的 生成推荐结果。 亚马逊和 Netflix 都曾公开表示过他们使用的是物-物关联算法的变种, 但 对细节都绝口不提。 用户关联算法和物-物关联算法都有的一个问题,是用户评分的不一致性。当给他们机会再 评一次分时, 用户往往会对同一件物品给出不同的得分。 品味在变、 心情在变, 印象也在变。 MIT 在上世纪 90 年代进行的一项研究表明, 在最初打分一年以后, 用户的评分会发生平均 1 分 (满分 7 分) 的变动。 研究人员们也在一直在尝试不同的方法在模型中纳入这一变量; 比如说, 如果用户给某个商品了打一个分, 但这个评分与推荐算法所了解的关于这个人和这 个商品的所有其他信息不相符,有的推荐算法就会邀请用户再次对这个商品进行评价。 降维算法:把事物特征一般化 不过,用户关联算法和物-物关联算法还存在一个比一致性更大的问题:它们太死了。就是 说,它们能发现都喜欢同一样东西的人,但却忽略了爱好非常相似的潜在用户组合。比如说 你喜欢莫奈的睡莲。那么,在这个法国印象派大师画的 250 幅睡莲中,你最喜欢哪一幅? 在一群喜欢莫奈的人当中, 完全可能每个人喜欢的睡莲都不相同, 而基本的算法就有可能识 别不出这些人都有着共同的爱好。 大约十年前,研究者们想出了一个办法,通过一个叫降维(Dimensionality Reduction)的 过程,把事物更一般化的表现出来。这种方法在计算量上比用户关联和物-物关联算法要密 集得多,因此也就没有那么快的得到采用。但随着计算机变更快更便宜,降维算法也逐步取 得了一些进展。 为了弄清降维算法是怎么工作的, 我们来看看你爱吃的东西, 以及如何把它跟其他一百万人 爱吃的东西做比较。 你可以把这些信息用一个巨型矩阵表示出来, 每一条竖线代表一样食物, 每个人爱吃什么东西就自然形成了一行。在你的这一行上面或许会显示你给了烤牛排 5 颗 星、红烧小排 4 星半、烤鸡翅 2 颗星、冻豆腐卷 1 颗星、奶酪烤蘑菇 5 颗星、盐水毛豆 4 颗星,等等。 然而, 使用这个矩阵的推荐算法并不关心你给哪种食物评了多少颗星。 它想要了解的是你一 般而言的喜好,这样它可以将这个信息应用到更丰富多样的食物上。比如说,基于你上面给 出的信息,算法可能会认为你喜欢牛肉、咸的东西和烤制菜品,不喜欢鸡肉和任何油炸的东

西,不喜欢也不讨厌蔬菜,依此类推。你爱吃的食物所拥有的特点或者说维度,它的数量和 符合你要求的食物的数量比起来要小得多——至多可能 50 或 100。 通过查对这些维度, 推 荐算法可以迅速决定你是否会喜欢一种新的食物(比方说盐焗排骨),方法就是把这种食物 的各项维度(咸的、牛肉做的、不是鸡肉、不是炒的、不是蔬菜、不是烤的)同你的资料进 行比对。 这种更为一般性的呈现使得推荐算法能准确的发现有着相似但不同喜好的用户。 而 且,它大幅压缩了矩阵的规模,使算法变得更加高效。 这是一个很酷的解决方案。 不过, 你爱吃的食物的维度该上哪儿去找呢?肯定不是去问厨师。 推荐系统会使用一种称为奇异值分解的数学方法来计算维度。 这种方法涉及到把最初的一个 巨型矩阵分解为两个 “口味矩阵”——其中一个包含了所有的用户和 100 项口味维度, 另 一个则包含了所有的食物和 100 项口味维度——再加上第三个矩阵,当乘以前面两个矩阵 中的任意一个时,会得到最初的那个矩阵(※此处已更改)。 不像上面例子中说的那样,计算用的维度既不是描述性的,也一点儿都不直观;它们是纯抽 象的值。这并没有什么,只要这些值最终生成准确的推荐结果就行了。这种方法的主要缺点 是, 创建矩阵所需要的时间会随着客户和产品数量的增多而飞速增长——创建一个拥有 2.5 亿名客户和 1000 万种产品的矩阵,需要花上创建一个 25 万名客户和 1 万种产品的矩阵 10 亿倍那么多的时间。而且这一过程还需要经常重复。一旦收到新的评分,矩阵就已经过 时;在像亚马逊这样的公司,每一秒钟都会收到新的评论。幸运的是,就算略微过时,矩阵 仍然能以一个挺不错的水平运作。 研究人员们也已经在设计新的算法, 为奇异值分解提供可 用的近似值并显著缩短计算时间。

本文来源:http://www.gbppp.com/jy/331489/

推荐访问:淘宝猜你喜欢 直通车猜你喜欢

热门文章