首页 > 经典文章 > 经典语录 > 两格眼睛图

两格眼睛图

时间:2018-08-09   来源:经典语录   点击:

【www.gbppp.com--经典语录】

两格眼睛图 第一篇_眼图

眼图

摘要——在通信中,眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能

关键词——通信原理、眼图、码间串扰、信道

I.概念

眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称 为 “眼图”。从“眼图”上可 以观察出码间串扰和噪声的影响,从而估计系统优劣程度。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

II.成因与作用

眼图的成因:由于示波器的余辉作用,扫描所得的每一个码元波形将重叠在一起,从而形成眼图。

眼图 的 “眼睛” 张开的大小反映着码间串扰的强弱。 “眼睛”张的 越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。

当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。若同时存在码间串扰 , “眼睛”将 张开得更小。

与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。

眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰。

( 1 )最佳抽样时刻应 在 “眼睛”

张开最大的时刻。

( 2 )对定时误差的灵敏度可由眼图斜边的斜率决定。斜率越大,对定时误差就越灵敏。

( 3 )在抽样时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变。

( 4 )眼图中央的横轴位置应对应判决门限电平。

( 5 )在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决。

III.实际应用

在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图

只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。

在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

(a) 无码间串扰时波形;无码间串扰眼图 (b) 有码间串扰时波形;有码间串扰眼图

眼图是由虚线分段的接收码元波形叠加组成的。眼图中央的垂直线表示取样时刻。当波形没有失真时,眼图是一只“完全张开”的眼睛。在取样时刻,所有可能的取样值仅有两个:+1或-1。当波形有失真时,在取样时刻信号取值分布在小于+1或大于-1附近,“眼睛”部分闭合。这样,保证正确判决所容许的噪声电平就减小了。换言之,在随机噪声的功率给定时,将使误码率增加。“眼睛”张开的大小就指明失真的严重程度。

衡量眼图质量的几个重要参数有: 1.眼图开启度(U-2ΔU)/U:指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图的开启度应为100%。 其中U=U++U-

2.“眼皮”厚度2ΔU/U

指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比,无畸变眼图的“眼皮”厚度应等于0。

3.交叉点发散度ΔT/T

指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发散度应为0。

4.正负极性不对称度

指在最佳抽样点处眼图正、

负幅度的不对称程度。无畸变眼图的极性不对称度应为0。

最后,还需要指出的是:由于噪声瞬时电平的影响无法在眼图中得到完整的反映,因此,即使在示波器上显示的眼图是张开的,

也不能完全保证判决全部准确。不过,原则上总是眼睛张开得越大,实际判决越准确。所以,还是可以通过眼图的张开度来衡量和比较基带信号的质量,并以此为依据来调整信号在信道中的传输特性,使信号在通信系统信道中传输尽最大可能接近于最佳工作状态。

由上图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感;(3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5)阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。

两格眼睛图 第二篇_50张图片,让你不相信你的眼睛

右脑 如果是逆时针转,说明你用的左脑。 据说,14%的美国人可以两个方向都能看见 可以和别人一起看,测试下,一般不同人同时看这张图的感觉都会不太一样的,真的很神奇。

图片:

图片:

图片:

图片:

图片:

图片:

两格眼睛图 第三篇_工程师必须懂得眼图分析方法

信号完整性分析基础系列之一

——关于眼图测量(上)

汪进进 美国力科公司深圳代表处

内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。

您知道吗? 眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。

您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。

在我2004年来力科面试前,我也从来没有听说过眼图。 那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。

网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。

“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。

二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

图一 眼图

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。 ”

是该专门写篇文章详细讲解眼图了! 写得不正确、不到位的地方,恳请大家指正,以使这篇文章将能不断修改完善,有益于广大工程师们的学习。

一、串行数据的背景知识

串行信号种类繁多,在图二所示的有PCI Express,Rapid

IO,DVI,S-ATA,USB,SDH,XAUI,等,其实现在的流行总线还远不止这些。每年都出来一些新流行的串行总线。每些总线差不多都有一个权威机构来定义该总线的信号标准和测试规范,这些机构成员多是由来自于不同公司的专家兼职担任。当然,关于PC的串行总线差不多由Intel来领导。图三所示某基于Intel Chipset的笔记本电脑的框架图中的各种总线,除了DDR和FSB是并行数据之外,其它都是串行数据了。这些权威机构除了定义规范,当然也会有一些利益博弈。所以有新的利益集团(这是一个中性的词)策划推广的时候就可能有新的总线规范出台,这就象3G有三种标准一样。 你方唱罢我登场,搞得下游厂商手忙脚乱。

串行数据总线越来越多,权威机构定义的测试规范也纷繁芜杂,我一直觉得该将这么多的权威机构统一为一个权威机构,就叫“串行总线国际工程师协会”好了,如果力科最先发起并领导这个协会,然后定义一系列的串行信号测试规范中都只推荐力科示波器,那么亲爱的朋友们,这个Day Dream的最终结果是什么? 示波器行业也许会重新大洗牌。人们总相信权威机构推荐的,譬如我们平时用牙膏等都会相信“中华医学会”之类的推荐。

信号速率不断加倍再加倍,2004年我刚到力科的时候,主流的串行信号速率在PC行业是2.5Gb/s,在通信行业是3.125Gb/s,如今,PC行业已Double到5Gb/s,通信行业已Double到6.25Gb/s,而且PC行业的8Gb/s,通信行业的12.5Gb/s似乎已指日可待。速率越来越高,并行数据必然要让位于串行数据。串行数据传输的典型结构框图如图三所示,“万变不离其宗” ,都是“两根差分线”。

相比于并行数据,串行数据的优点是:

1,信号线的数量减少。

【两格眼睛图,】

2,消除了并行数据之间传输的延迟问题。

图二 串行数据的整体特点

图三 某笔记本电脑架构示意图

3,因为时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了。 4, 传输线的PCB设计也更容易些。

5, 信号完整性测试也更容易。

图四 串行信号实例

串行数据的测试点包括了芯片的发送端和接收端等不同节点。描述串行数据的常用单位是波特率和UI,譬如3.125Gb/s表示为每秒传送的数据比特位是【两格眼睛图,】

3.125G比特(byte),对应的一个单位间隔(1UI)表示为一个比特位的宽度是波

特率的倒数,1UI=1/(3.125Gb/s)=320ps。现在比较常见的串行信号码形是NRZ码。正电平表示”1”,负电平表示“0”。图三所示是示波器捕获到的一组串行信号,虚线之间的时间间隔代表了一个UI,图中对应的码型是101100101010001。

二、眼图的一些基本概念

— “什么是眼图?”

— “眼图就是象眼睛一样形状的图形。”

眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。 图八的眼图非常漂亮,这可能是用采样示波器测量的眼图。

图五 眼图定义

图六 “双眼皮”眼图

两格眼睛图 第四篇_眼见不为实!欺骗你眼睛的30张神奇图片

有这么一句老话叫“眼见为实耳听为虚”,但有的时候,其实眼见也未必为实。怎么?不信?那看看今天小编为大家准备的这30张神奇图片,你就信了!

耶鲁大学耗时5年的研究成果:如果你看见这个舞女是顺时针转,说明你用的是右脑 如果是逆时针转,说明你用的左脑。据说,只有14%的美国人可以两个方向都能看见。

如果你够邪恶,你一定看的到~

【两格眼睛图,】

这道题你能解释么?

盯着中间的“+”号,你会觉得很神奇!

如果你够邪恶,你一定看的到~

看起来很诡异的一张照片,但照片确实没有进行任何处理!

盯着中间的黑点~

没近视的看到的是爱因斯坦,近视的看到的是玛丽莲梦露!或者你眯着眼站远点

看看。

【两格眼睛图,】

看着黑点,然后身体前后移动

~

两格眼睛图 第五篇_眼的构造图

眼睛构造(图)

2008-8-14 11:32:20 中华眼科在线 眼睛是心灵的窗户,我们每人都有一双眼睛。但是,我们每个人并不是都完全了解眼睛的构造。

眼球近似球形,位于眼眶内。正常成年人其前后径平均为24mm,垂直径平均23mm。最前端突出于眶外12--14mm,受眼睑保护。【两格眼睛图,】

眼球包括眼球壁、眼内腔和内容物、神经、血管等组织。

一、眼球壁主要分为外、中、内三层。

1、外层由角膜、巩膜组成。前1/6为透明的角膜,其余5/6为白色的巩膜,两者移行处为角巩膜缘。眼球外层起维持眼球形状

和保护眼内组织的作用。

⑴ 角膜是眼球前部的透明部分,光线经此射入眼球。角膜稍呈椭圆形,略向前突。横径为11.5~12mm,垂直径约

10.5~11mm;周边厚约1mm,中央为0.6mm;前面的曲率半径为7.8mm,后面约6.8mm,屈光率相当于+43D的镜片。 角膜分为:

a、上皮细胞层:此层再生能力强,破损修复后不遗留痕迹; b、前弹力层:损伤后不能再生;

c、实质层:在光学系统上具有重要意义;

d、后弹力层:损伤后可迅速再生;

e、内皮细胞层:具角膜-房水屏障功能,受损不能再生。 角膜无血管,由泪液、房水、周围血管以及神经支提供营养;角膜表面从大气得氧;角膜前的一层泪液膜有防止角膜干燥、保持角膜平滑和光学特性的作用;角膜含丰富的神经,感觉敏锐。 因此角膜除了是光线进入眼内和折射成像的主要结构外,也起保护作用,并是测定人体知觉的重要部位。

⑵ 巩膜为致密的胶原纤维结构,不透明,呈乳白色,质地坚

韧。前面与角膜,后面与视神经硬膜相连。

巩膜包括表层巩膜、巩膜实质和棕黑层。

其前端与角膜相结合处的内侧面,构成前房角,是房水循环的重要部位;巩膜表面被眼球筋膜和结膜覆盖;外侧面即角巩膜缘处,巩膜、角膜和结膜三者结合;巩膜是眼外肌的附着点处,此处巩膜最薄,为0.3mm,其余部位厚约1mm。

2008-8-14 11:32:20 中华眼科在线

2、中层又称葡萄膜,色素膜,具有丰富的色素和血管,包括虹膜、睫状体和脉络膜三部分。

⑴ 虹膜:呈环圆形,在葡萄膜的最前部分,位于晶体前,有辐射状皱褶称纹理,表面含不平的隐窝。中央有一2.5~4mm的

圆孔,称瞳孔。由环形的瞳孔括约肌(副交感神经支配)和瞳孔开大肌(交感神经支配),调节瞳孔的大小。光照下瞳孔缩小,称对光反射。

⑵ 睫状体:它前接虹膜根部,后接脉络膜,外侧为巩膜,内侧则通过悬韧带与晶体赤道部相连。

睫状体包括睫状肌、丰富的血管及三叉神经末梢,受副交感神经支配。它分泌房水,与眼压及组织营养代谢有关;睫状体也经悬韧带调节晶体的屈光度,以看清远近物。

⑶ 脉络膜:位于巩膜和视网膜之间。脉络膜的血循环营养视网膜外层,其含有的丰富色素起遮光暗房作用。

3、内层为视网膜,是一层透明的膜,也是视觉形成的神经信息传递的第一站。具有很精细的网络结构及丰富的代谢和生理功能。

视网膜的外侧为脉络膜,内侧为玻璃体,前到锯齿缘、睫状体后缘,后至视神经盘。锯齿缘在视网膜的前端,位于角巩膜缘后6mm处,也是视网膜的前附着位,与睫状体平坦部相连。视网膜的视轴正对终点为黄斑中心凹。黄斑区是视网膜上视觉最敏锐的特殊区域,直径约1~3mm,其中央为一小凹,即中心凹。黄斑区很薄,中央无血管,可透见其下面橙红色的脉络膜色泽。此处主要为视锥细胞。黄斑鼻侧约3mm处有一直径为1.5mm的淡红色

区,为视盘,亦称视乳头,是视网膜上视觉纤维汇集向视觉中枢传递的出眼球部位。视盘多呈垂直椭圆形,色淡红,境界清楚,其上有动静脉血管支,中央部有小凹陷区称为视杯或生理凹陷。视盘为神经纤维组合的传递束开端,无感光细胞,故视野上呈现为固有的暗区,称生理盲点。

视网膜由外向内分10层:色素上皮层;视细胞层;外界膜;外颗粒层;外从状层;内颗粒层;内从状层;节细胞层;神经纤维层;内界膜。

二、眼内腔和内容物

1、眼内腔包括前房、后房和玻璃体腔。

前房前界为角膜,后界为虹膜和晶体,周边为前房角。中央部位深2.5~3.0mm,周边浅。人眼的容积约为0.2ml。后房前界为虹膜,周边为睫状突,后为晶体前囊和悬韧带。房水由睫状突的非色素上皮分泌到后房,流经瞳孔到前房。成人容积约0.06ml。玻璃体腔是眼内最大的腔,前界为晶体、悬韧带和睫状体,后界为视网膜、视神经。容积为4.5ml。

2、眼内容物包括房水、晶体和玻璃体。三者均透明,与角膜一起共称为屈光介质。

房水由睫状突产生,有营养角膜、晶体及玻璃体,维持眼压的

两格眼睛图 第六篇_工程师必须懂得眼图分析方法

信号完整性分析基础系列之一

——关于眼图测量(上)

汪进进 美国力科公司深圳代表处

内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。

您知道吗? 眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。

您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。

在我2004年来力科面试前,我也从来没有听说过眼图。 那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。

网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。

“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。

二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。【两格眼睛图,】

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

图一 眼图

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。 ”

是该专门写篇文章详细讲解眼图了! 写得不正确、不到位的地方,恳请大家指正,以使这篇文章将能不断修改完善,有益于广大工程师们的学习。

一、串行数据的背景知识

串行信号种类繁多,在图二所示的有PCI Express,Rapid

IO,DVI,S-ATA,USB,SDH,XAUI,等,其实现在的流行总线还远不止这些。每年都出来一些新流行的串行总线。每些总线差不多都有一个权威机构来定义该总线的信号标准和测试规范,这些机构成员多是由来自于不同公司的专家兼职担任。当然,关于PC的串行总线差不多由Intel来领导。图三所示某基于Intel Chipset的笔记本电脑的框架图中的各种总线,除了DDR和FSB是并行数据之外,其它都是串行数据了。这些权威机构除了定义规范,当然也会有一些利益博弈。所以有新的利益集团(这是一个中性的词)策划推广的时候就可能有新的总线规范出台,这就象3G有三种标准一样。 你方唱罢我登场,搞得下游厂商手忙脚乱。

串行数据总线越来越多,权威机构定义的测试规范也纷繁芜杂,我一直觉得该将这么多的权威机构统一为一个权威机构,就叫“串行总线国际工程师协会”好了,如果力科最先发起并领导这个协会,然后定义一系列的串行信号测试规范中都只推荐力科示波器,那么亲爱的朋友们,这个Day Dream的最终结果是什么? 示波器行业也许会重新大洗牌。人们总相信权威机构推荐的,譬如我们平时用牙膏等都会相信“中华医学会”之类的推荐。

信号速率不断加倍再加倍,2004年我刚到力科的时候,主流的串行信号速率在PC行业是2.5Gb/s,在通信行业是3.125Gb/s,如今,PC行业已Double到5Gb/s,通信行业已Double到6.25Gb/s,而且PC行业的8Gb/s,通信行业的12.5Gb/s似乎已指日可待。速率越来越高,并行数据必然要让位于串行数据。串行数据传输的典型结构框图如图三所示,“万变不离其宗” ,都是“两根差分线”。

相比于并行数据,串行数据的优点是:

1,信号线的数量减少。

2,消除了并行数据之间传输的延迟问题。

图二 串行数据的整体特点

图三 某笔记本电脑架构示意图

3,因为时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了。 4, 传输线的PCB设计也更容易些。

5, 信号完整性测试也更容易。

图四 串行信号实例

串行数据的测试点包括了芯片的发送端和接收端等不同节点。描述串行数据的常用单位是波特率和UI,譬如3.125Gb/s表示为每秒传送的数据比特位是

3.125G比特(byte),对应的一个单位间隔(1UI)表示为一个比特位的宽度是波

特率的倒数,1UI=1/(3.125Gb/s)=320ps。现在比较常见的串行信号码形是NRZ码。正电平表示”1”,负电平表示“0”。图三所示是示波器捕获到的一组串行信号,虚线之间的时间间隔代表了一个UI,图中对应的码型是101100101010001。

二、眼图的一些基本概念

— “什么是眼图?”

— “眼图就是象眼睛一样形状的图形。”

眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。 图八的眼图非常漂亮,这可能是用采样示波器测量的眼图。

图五 眼图定义

图六 “双眼皮”眼图

本文来源:http://www.gbppp.com/jd/470062/

推荐访问:四格图qq女生头像眼睛 眼睛测试图

热门文章