首页 > 范文大全 > 自我介绍 > 低频振荡

低频振荡

时间:2018-08-29   来源:自我介绍   点击:

【www.gbppp.com--自我介绍】

低频振荡 第一篇_电力系统低频振荡的产生原因及危害性

电力系统低频振荡的产生原因及危害性(图文)

2010-10-23 10:28:14 互联网 浏览:

1111 发布评论(

0)

介绍电力系统低频振荡的产生原因及危害性、PSS的基本原理、参数、作用及现场试验过程,并对实验结果进行探讨。

关键词:低频振荡 励磁调节器 电力系统稳定器(PSS)

1 前言

天津大唐盘山发电有限责任公司是装机容量为2×600MW的新建大型火力发电厂,它同原有天津国华盘山发电有限责任公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。

根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2 低频振荡产生原因分析及危害性

电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界-)

低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。

3 PSS原理及其作用

为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机轴速度偏差(△w)以及它们的组合等。它不仅可以补偿励磁调节器的负阻尼,而且可以增加正阻尼,使发电机有效提高遏制系统低频振荡能力。

尽管PSS已是成熟的普遍技术,但它仍是消除互联电网负阻尼低频振荡最经济有效的方法。当系统规模较小、互联程度较低时,系统振荡不明显,PSS整定不为人们所关注。但在当今大电网互联迅速发展的情况下,PSS的作用已经引起人们的高度重视。1994年我国南方联营电网发生的系统振荡事故是典型的一例,事后分析表明,若在此系统的主力机组上加装PSS,可以有效地阻尼振荡,防止有严重后果的动态稳定破坏事故的发生。 4 PSS的构成和传递函数

早期的PSS由分立元件构成,在微机式励磁调节器中PSS由软件构成,我厂3#、4#机组均是哈尔滨电机厂生产的三机无刷励磁发电机组,型号为QFSN-600-2YH,励磁调节器采用英国ROLLS-ROYCE(简称R-R)公司的数字式励磁调节器, PSS完全由软件构成,其PSS输入信号采用发电机电功率即△P,其结构如图1:

图1 电力系统稳定器(PSS)方框图

ROLLS-ROYCE公司的电力系统稳定器(PSS)输入信号为发电机的负电功率信号,由此生成一个相位补偿及增益控制的调节信号以对有功功率振荡产生阻尼作用。

现场运行参数为:PSS自动投入值:0.3PU 功率,返回值0.14PU 功率,Kp=2、Te=10 、T1=2、T2=0.35、T3=4、T4=0.2、T5=0.05、T6=0.08、T7=0.05,PSS输出限幅: ±5%

5 PSS实验过程

5.1 励磁系统在线无补偿频率特性的测量

励磁控制系统无补偿频率特性即励磁系统滞后特性。因励磁控制系统滞后特性的存在,加到励磁调节器的附加信号经滞后才能产生附加力矩。测量励磁控制系统滞后特性应测量附加力矩对PSS迭加点的滞后角度。因为在发电机高功率因数运行时,机端电压对PSS迭加点的滞后角度近似等于附加力矩对PSS迭加点的滞后角度。 实验时,发电机并网运行,记录有功、无功、机端电压值,PSS不投入,用频谱仪将噪音信号加入到调节器的相加点上,测量励磁系统的相频特性。测得的励磁系统在线无补偿相频特性见表1。

表1 励磁系统相频特性

由表1可见,在线无补偿频率特性基本正常,相位滞后比一般的交流励磁机励磁系统稍大些。(励磁机励磁系统约为-40°---150°)

5.2 励磁系统在线有补偿频率特性的测量

有补偿频率特性由无补偿频率特性与PSS单元相频特性相加得到,用来反映PSS相位补偿后的附加力矩相位。DL/T650-1998<<大行汽轮发电机自并励静止励磁系统技术条件>>提出有补偿频率特性在该电力系统低频振荡区内满足-80°至-135°要求,此角度以机械功率方向为零度。一般试验采用的方法为:(1)断开PSS输入端,在PSS输入端加噪声信号,测量机端电压相对PSS输入信号的相角。(2)PSS环节的相角加上励磁控制系统滞后相角。 在现场试验中,PSS参数的预选择,可以用以上方法进行,此试验的目的是找出一组较好的PSS参数,并尽量使整个低频振荡频率范围内都得到较好的相位补偿。

由于R-R公司的励磁调节器中未设置PSS输入端,也未有相应的软件,此试验在现场无法进行。因此,由中国电科院技术人员根据厂家提供的PSS的传递函数框图,预设置一组PSS参数,用MATLAB自编程序进行仿真计算。PSS参数:Kp=2 Te=10 T1=2 T2=0.35 T3=4 T4=0.2 T5=0.05 T6=0.08 T7=0.05,计算所得PSS得相频特性见图2、Kp=2.0时幅频特性曲线见图3

将计算所得的各低频振荡频率下PSS相位角Φp与现场测得的在线无补偿频率特性上同频率下励磁系统滞后角Φe相加,得到在线有补偿频率特性计算值。计算所得的在线有补偿频率特性见下表2。

从表2可见,在低频震荡频率0.2Hz-1.7 Hz范围内都基本满足滞后-80°---(-135°)的要求,此组PSS参数是比较合适的。【低频振荡,】

图2 PSS系统相频特性曲线

图3 Kp=2.0时幅频特性曲线

表2 在线有补偿频率特性计算值

其中:Φ=Φe + Φp

5.3 阶越响应(以4#机组为例)

试验条件:发电机并网运行,P=589.6MW Q=77.4Mvar Vt=19.44KV

低频振荡 第二篇_电力系统低频振荡

电力系统低频振荡综述

1 研究背景和意义:

随着互联的电力系统规模不断扩大,电力系统的稳定性问题也越来越突出。20世纪60年代美国的西北联合系统与西南联合系统进行互联运行时,发生了功率的增幅振荡,最终破坏了大系统间的并联运行。自此之后,低频振荡一直是电力系统稳定运行中备受关注的重要问题之一。除此之外,日本、欧洲等也先后发生过低频振荡。在我国,随着快速励磁装置使用的增加,也出现了低频振荡现象[1],如:1983 年湖南电网的凤常线、湖北电网的葛凤线;1994 年南方的互联系统;1998 年、2000年川渝电网的二滩电站的电力送出系统;2003 年 2、3 月南方--香港的交直流输电系统;2005 年 10 月华中电网等。以上电网都曾发生全网性功率振荡。电力系统低频振荡一旦发生,将严重威胁电网的安全稳定运行,甚至可能诱发连锁反应事故,造成严重的后果[2]。因此,对低频振荡进行深入研究并分析其控制策略具有十分重要的意义。

我国的超大规模交流同步电网的互联以及交直交混合互联电网已经初具规模,并且发展迅速。2011年12月,由我国自主研发、设计、制造和建设的,目前世界上运行电压最高、输电能力最强、技术水平最先进的交流输电工程——1000千伏晋东南—南阳—荆门特高压交流试验示范工程扩建工程正式投入运行;2012年3月,锦屏-苏南±800千伏特高压直流输电线路工程全线贯通。仿真分析和现场试验结果表[3-4]:跨区交流联网特别是弱联系交流联网将带来大扰动的暂态稳定问题和小扰动的动态稳定问题,其中,大扰动后暂态功率的大范围传播和0.1Hz左右的超低频振荡对互联电网的安全构成威胁,应采取有效措施加以解决。

总之,低频振荡现象在大型互联电网中时有发生,常出现在长距离、重负荷输电线路,并随着互联电力系统规模日益增大,系统互联引发的区域低频振荡问题已成为威胁互联电网安全稳定运行、制约电网传输能力的重要因素之一[1],有必要全面认识电力系统低频振荡问题。

2 国内外研究现状:

2.1 电力系统低频振荡

电力系统中发电机经输电线并列运行时,在扰动下会发生发电机转子间的相对摇摆,并在缺乏阻尼时引起持续振荡。此时,输电线上功率也会发生相应振荡。由于其振荡频率很低,一般为 0.2~2.5Hz,故称为低频振荡[5]。

2.2低频振动的分类

按振荡频率的大小和振荡涉及的范围来看,电力系统低频振荡大致分为两类[5]:

1)局部振荡模式(Local modals),是指厂站内的机组之间或电气距离较近的厂站机组之间的振荡,这种振荡局限于区域内,其影响范围较小且易于消除。这种振荡频率较高,一般在 0.7~2.5Hz 之间[6]。

2)区域振荡模式(Inter-area modals),是指一部分机群相对于另一部分机群的振荡,在联系较薄弱的互联系统中,耦合的两个或多个发电机群间常发生这种振荡。由于电气距离较大,同时发电机群的等值发电机的惯性时间常数较大,其振荡频率较低,一般在 0.1~0.7Hz 之间[6]。

2.3 低频振荡的产生机理

从低频振荡发生研究至今,在机理方面的研究主要集中在以下几个方面:

1) 负阻尼机理

根据线性系统理论分析,由于系统的调节措施的作用,产生了附加的负阻尼,抵消了系统的阻尼,导致扰动后振荡不衰减或增幅振荡。

1969年De mello和Concordia运用阻尼转矩的概念对单机无穷大系统低频振荡现象进行了机理研究[7],指出: 由于励磁系统存在惯性,随着励磁调节器放大倍数的增加,与转子机械振荡相对应的特征根的实部数值将由负值逐渐上升,若实部由负变正,会产生增幅振荡。它揭示了单机无穷大系统增幅振荡发生的机理,这一方法是基于线性系统理论,通过分析励磁放大倍数和阻尼之间的关系来解释产生低频振荡的原因。基于这种分析的原理和思想,该方法可进一步扩大到多机系统,通过线性系统的特征根来判断系统是否会发生低频振荡。

该振荡机理概念清晰,物理意义明确,有助于理解为何远距离大容量输电易发生低频振荡,已成为电力系统低频振荡的经典理论。

目前负阻尼振荡机理大部分还停留在单机-无穷大系统中做理论分析[8-9]和控制器设计,多机系统中仅有少数应用,这是因为阻尼转矩的概念在多机系统中物理意义不够明确,且多机系统中的阻尼计算比较困难。

2) 共振或谐振理论

电力系统低频振荡研究的是各同步发电机转子间的相对摇摆稳定性,当系统中存在不能忽略的周期性扰动时,系统是非自治的,发电机转子运动方程必须用二阶常系数非齐次微分方程来描述。此时发电机转子运动方程的解由通解和特解两部分组成,通解与系统的阻尼有关,而特解则跟系统非自治性有直接的关系。如果周期性扰动的频率与系统的固有低频振荡的频率接近,转子角的解中将有一个等幅不衰减的振荡特解。随着与阻尼有关的通解的衰减,余下的特解使得转子角表现为不稳定的等幅振荡。这就是低频振荡的强迫振荡机理。

强迫振荡机理与负阻尼机理有明显的不同,它具有起振快,从受到扰动到振荡到最大幅值一般只有两到三个振荡周期;功率在振荡过程中基本保持等幅振荡;扰动信号的频率越接近系统的固有频率,振荡的幅值越大,当与系统固有频率的差值超过一定的范围时,将很难激发振荡;振荡消失的速度很快,一旦扰动振荡源消失,功率振荡将大幅度衰减。

3) 非线性理论机理

由于系统的非线性的影响,其稳定结构发生变化。当参数或扰动在一定范围内变化时,会使得稳定结构发生变化,从而产生系统的振荡。这一分析有别于线性系统,因为线性系统的稳定是全局性的,而非线性系统的稳定是局部的。电力系统低频振荡的非线性奇异现象以及表现为一种非周期的、似乎是无规则的突发性的机电振荡混沌现象,都属于该范畴。

在所有低频振荡机理中,负阻尼机理研究得最早也最成熟,这主要得益于线性系统理论的成熟,目前已经形成了一套比较完整的理论体系,并且在工程上得到实际应用。

2.4低频振荡的分析方法

低频振荡属于小扰动稳定的范畴,小扰动稳定的分析方法很多,线性理论方面有电气转矩法、频率响应法和线性模式分析法等,非线性理论方面有时域仿真法、信号分析法、正规形法和模态级数法、分又混沌理论等。面对大型复杂的互联电力系统,各种方法都有白己的优点,但也存在各自的不足。

电气转矩法[8]是最早用于分析小扰动稳定的方法,在单机-无穷大系统中其物理意义明确,但计算较复杂[10],在多机系统中仅有少数应用。频率响应法[11] 主要用来设计低频振荡阻尼控制器,也可判断系统稳定性,但频率响应的计算量非常大,提供的信息有限,不适用于大型电力系统。

1) 线性模式分析法

线性模式分析法为小扰动稳定性问题提供了系统化的分析方法,其实质是李雅普诺夫线性化方法[5]。李雅普诺夫线性化方法的基本思想是,从非线性系统的线性逼近稳定性,得

出非线性系统在一个平衡点附近的小范围稳点的结论。非线性系统在平衡点附近的稳定性,是由系统线性化后特征矩阵A的特征根所确定的: 当特征值的实部全为负时,原始系统是渐近稳定的; 当至少存在一个正实部的特征根时,原始系统是不稳定的。

用线性模式分析法进行电力系统小扰动稳定分析,是在系统初始工作点附近,将系统各动态元件的方程线性化形成系统状态方程。系统振荡模式由状态方程中特征矩阵的复特征值对决定,每对复特征值对应于一个振荡模式,特征根的实部刻画了系统对该振荡模式的阻尼,虚部给出了该振荡模式的频率,特征向量反映了振荡模式在整个系统中的行为,参与因子则给出了振荡模式与状态变量间的线性相关性。用线性模式分析法研究电力系统在不同振荡模式下的动态行为,可以揭示系统复杂动态现象背后的内在本质。借助于线性系统特征分析的丰富成果,线性模式分析法在电力系统小扰动稳定分析中获得了广泛的应用。

线性模式分析法不仅能有效地给出振荡模式的定量信息,得出的参与因子还可以用来确定阻尼控制器的最佳安装地点,特征值对控制器参数的灵敏度可用来设计阻尼控制器的参数。然而,电力系统是强非线形的复杂系统,在大扰动情况下,线性模式分析法存在较大的误差,同时特征值分析方法计算速度慢,不能满足在线分析的需要。线性模式分析法建立在准确的系统模型基础上,模型参数的精度对分析结果有很大影响,而关键特征子集法需要先建立全维的状态矩阵,且不能保证找到所有的负阻尼模式和弱阻尼模式。这些都影响了线性模式分析法的实用性。

2) 时域仿真法

时域仿真法以数值分析为基础,通过计一算机仿真出系统变量在一定扰动下的时间响应,然后从仿真曲线推算出系统振荡模式的频率和阻尼特性。时域仿真法能充分考虑电力系统非线性因素的影响,对建模几乎没有限制,常用来检验其它分析方法的结果以及控制器的控制效果。

时域仿真法在大型电力系统小扰动稳定性分析中的实用性较差,这是因为:(1)时域仿真结果与扰动的形式和地点有关,而小扰动稳定研究的是系统固有的性质,与扰动无关,同时扰动和时域观测量的选择对结果影响非常大,不能保证激发和分析出所有的关键模式,给出的定量信息有限; (2)对于大型的互联系统,其区域振荡模式的频率较低,仿真时间必须足够长,同时大量的系统变量要仿真分析,计算量较大; (3)无法充分揭示出小扰动稳定性的实质,难以找出引起系统不稳定的原因。

3)信号分析法

信号分析法的基础就是基于实测数据的分析方法。该方法的主要思想是通过实测数据或仿真数据,辨识得出系统的振荡频率、模式等信息,能够定量分析系统振荡的阻尼问题。信号分析中通常用到的方法有傅立叶变换分析法、小波分析法、卡尔曼滤波法、Prony法、HHT等。

傅立叶变换分析法以正弦信号作为分析基础,将测得的时域上的离散信号转变到频域上的信号进行分析。但是,傅立叶变换只有当信号满足绝对可积的条件时才能使用。同时,该方法的分析精度还受到数据窗的选择限制,且无法反映出系统振荡的阻尼特性和瞬时特性。

小波分析法是一种把时域和频域结合起来的分析方法,具有可变的时域和频域分析窗口。该方法能构成信号的时频谱,描述观察信号的时频联合特征,具有局部化的性质,非常适合与瞬态和非平稳信号的分析处理。但是,该方法存在小波基选取困难、拟合精度较差等缺点[12]。

卡尔曼滤波法采用最优化自回归数据处理算法。该方法通过处理一系列带有误差的实际测量数据,得到系统物理参数的最佳估计,消除噪声的影响。但是,对不同形式噪声,该方法滤波效果差别很大,并且不能反映出振荡阻尼的衰减特性。

Prony方法就是采用指数函数的线性组合的模型来拟合等间隔的采样数据。该方法通过

辨识时域信号来得到系统的频率、衰减、幅值和初相位等信息[13]。近年来,该方法在大规模动态系统辨识中问题的得到了广泛的应用。但是,传统Prony方法对待分析的信号要求较高,并且噪声抑制能力较差,难以确定模型的有效阶数。

HHT 变换(Hilbert-Huang Transform)法是由经验模态分解(empirical mode decomposition,EMD)和 Hilbert 变换(HT)两部分组成,其核心部分是经验模态分解[14]。非平稳振荡数据通过 HHT 变换后,能从中准确地提取动态振荡特性以及丰富的系统故障暂态信息,并能有效反映出低频振荡中的非线性振动模式[15]。但是,该方法存在端点效应,实时性稍差,以及难以将复杂信号中相近的频率分解为独立的 IMF 分量等不足。

4) 正规形法和模态级数法

正规形方法的思想是通过非线性向量场的正规形变换和反变换,将原来的非线性向量场映射为线性、解耦的正规形,得出原非线性向量场的动态特性和稳定性[17]。在电力系统低频振荡分析中,利用正规形法得到的解可以研究大扰动下系统动态性能,还可以分析模式间的非线性相关作用,能够有效对系统振荡的本质进行分析[18]。该方法已在模式间相互作用分析,控制器设计以及低频振荡共振机理分析等方面应用[19]。但是,该方法需要求解非线性代数方程,对于大型互联系统的求取过程极为复杂繁琐,且不适用于高阶共振条件的系统。

模态级数法的思想是基于泰勒级数展开,对状态空间的线性变换,可得到非线性系统响应的近似封闭解[16]。与上种方法相比,该方法避免了非线性方程的求解,无需非线性变换,不受系统共振情况的影响,因此适用于具有高阶共振条件的系统[20]。但是,该方法同样面临着难以求解非线性代数方程的问题,限制了在大系统中的实用性。

5) 分叉理论和混沌现象

分叉(或称分岔)理论的核心思想是把特征值和高阶多项式结合起来,从数学空间结构上研究由于参数的改变而引起的非线性系统不稳定性,更全面地分析电力系统中的静态失稳和周期振荡。对于非线性系统

xf(x,) xRm,Rn

当该系统的形态在0值处发生变化,可能从一种响应突然跃变为另一种响应,这种变化就是分叉现象[21]。分叉理论充分考虑到实际系统非线性的特性,能解决特征值法无法解决的实质问题。但是,该方法在系统规模和方程阶次上有所限制,在多机系统中的应用还需进一步研究。

混沌现象是指在非线性系统发生的貌似随即的不规则运动。该现象貌似随机,并对初始条件十分敏感,是一种长期有界的动态行为。目前已经发现通往混沌的途径有级联的倍周期分叉、环面分叉等[22]。混沌现象一旦发生,系统就表现出无规则、突发式或间歇式的机电振荡,对整个电力系统的稳定性产生严重影响。近年来,一些学者通过对非线性系统分叉的研究,对某些非线性系统的现象进行了解释[23,24]。但是到目前为止,研究尚处于初步探讨阶段。大部分研究只限于规模较小的自治系统,对于大规模系统的问题还有待进一步研究。

6) 基于广域测量信息在线辨识低频振荡

随着同步测量技术和广域测量系统(WAMS)应用到电力系统中,能够实时测量系统中发电机的功角,实现全网数据的同步采集、实时记录、远距离实时传递以及对数据的同步实时分析处理。

在电力系统低频振荡的分析中,对发电机的功角进行实时测量和记录,通过仿真确定振荡的原因,并生成抑制低频振荡的控制策略,同时还能为再现振荡过程提供验证平台。另外,基于广域测量信息在线辨识低频振荡方法还可以对在线辨识时的模型阶数和输入信号的选择方法进行了改进,提出结合工程实际的基于广域测量系统的研究低频振荡的实现方案

[25]。这些方案具有系统性、直接性、噪声干扰小的特点,为抑制电力系统低频的提供了手段。

3 低频振荡的数学模型

以单机无穷大系统的低频振荡为例:

后的暂态电动势E恒定及机械功率Pm恒定,忽略线路设发电机采用经典二阶模,Xd

损耗和分布电容,则对于下图中单机无穷大系统有如下关系:

dMPmPeD(1)dt d1dt

式中,PeEU的作用。 sin,X包含了XdX对上式在工作点附近线性化,则

EUdMPcos0DmdtX d1dt

【低频振荡,】

若令KEUcos0为同步力矩系数,则当Pm0时,上式可进一步改写为: X

MDK0

从而有特征方程为:

Mp2Dp

K0

当无阻尼时(D=0),相应的特征根为:

p1,2jn(p.u.) 这对根反映了机组转子角增量在扰动后的过渡过程中将相对于无穷大系统作角频率为n的等幅振荡。若设M6~12s(6~12)B (p.u.) (B314rad/s),并且EU

cos0,1X

0.2~10(p.u.),则有:【低频振荡,】

n,max0.05(p.u.)

低频振荡 第三篇_低频振荡

电力系统低频振荡

题目:

院系:

班级:

姓名:

学号: 电力系统低频振荡 电气与电子工程学院

华北电力大学

2012年4月

目录

前言............................................................ 1

1.

2. 低频振荡产生机理 ........................................... 1 低频振荡分析方法 ........................................... 3

2.1 特征值分析法............................................ 4

2.2 Prony法 ................................................ 4

2.3 复转矩系数法............................................ 5

3. 低频振荡控制措施 ........................................... 6

3.1 PSS电力系统稳定器 ...................................... 6

3.2 电力电子装置............................................ 7

4. 算例分析 ................................................... 8

4.1 仿真模型................................................ 8

4.2 仿真结果................................................ 9

4.3 理论计算与分析......................................... 11

5. 展望 ...................................................... 12

参考文献....................................................... 13

电力系统低频振荡

前言

近年来,随着互联电力系统的不断壮大以及高增益快速励磁系统等控制设备

的投入,低频振荡问题日益突出,由于其振荡频率很低、周期较长、波及面较广,

给电力系统的稳定运行带来很大的危害[1]。随着电网的扩大和电力市场时经济

性的追求,电力系统运行越来越趋于极限,有必要全面地认识这一问题。

本文主要阐述了电力系统低频振荡的产生机理、分析方法和控制措施及将来

可能的发展动向。并通过在仿真软件PSCAD中建立简单的电力系统,针对产生低

频振荡原因进行分析,并应用特征根法计算低频振荡频率,验证该方法的有效性。

1. 低频振荡产生机理【低频振荡,】

电力系统中发电机经输电线并列运行时,在扰动下会发生发电机转子间相对

摇摆,并在缺乏阻尼时引起持续振荡。此时,输电线上功率也会发生相应振荡。由于其振荡频率很低,一般为0.2~2.5Hz,故称为低频振荡。

最早并在工程上被广泛应用的低频振荡机理,是1969年F.Demello[3]提出的

用负阻尼力矩的概念对单机无穷大系统低频振荡现象进行机理研究。文章基于线

性系统理论,通过分析励磁放大倍数和阻尼之间的关系来解释产生低频振荡的原

因,具体负阻尼低频振荡机理如图1所示。

[2]

图1 负阻尼低频振荡机理

但近年来,由于某些振荡实例难以用欠阻尼机理来完美解释,许多学者对低

频振荡的机理和成因进行了反思。文献[4]认为几个主导模式间存在的非线性交

互作用,导致振荡能量在不同模式间相互交换,尤其当几个振荡模式满足倍/差

关系时,能量交换现象尤为强烈,从而导致系统振荡失稳。文献[5]提出模态谐

振的观点,认为系统参数的微小变化会导致振荡特性接近的多个模式中的1个变

得不稳定,导致系统振荡。文献[6]认为当系统中存在周期变化的参数时,可能

引起系统的周期振荡。文献[7]讨论了强迫功率振荡的基础理论,认为当系统存

在持续的周期功率扰动且扰动频率接近系统固有频率时,会引起大幅的功率波动,导致系统发生低频振荡。文献[8, 9]认为非线性奇异现象可能造成低频振荡。

但文献[10]指出也许可以认为振荡的机理是多方面的,许多因素都会在一定的条

件下为低频振荡推波助澜,而缺乏阻尼则在所有情况下都是致命的。

还有的学者认为目前低频振荡机理主要可以分为三类[11]:1)基于线性系统分

析的负阻尼理论;2)由于输入信号或扰动信号与系统固有频率存在某种特定的关

系,产生较大幅度的共振或谐振,其频率有时处于低频区域,产生了低频振荡;

3)考虑系统的非线性的影响,其稳定结构发生变化。当参数或扰动在一定范围内

变化时,会使得稳定结构发生变化,从而产生系统的振荡。

2. 低频振荡分析方法

表1 低频振荡分析方法

低频振荡 第四篇_低频振荡问题综述

电力系统低频振荡分析综述

1. 低频振荡概念

电力系统在某一正常状态下运行时,系统的状态变量具有一个稳态值,但是电力系统几乎时刻都受到小的干扰影响,如负荷的随机变化或风吹架空线摆动等。当系统经受扰动后,其运行状态会偏离原来的平衡点,这时希望系统在阻尼的影响下经历一个振荡过程,回到稳定的平衡运行点。在这一过程中,如果系统的阻尼不足则会出现或观测到电力系统的低频振荡现象。

所谓的低频振荡,一般有如下的定义描述。电力系统中的发电机经输电线路并列运行时,在某种扰动作用下,发生发电机转子之间的相对摇摆,当系统缺乏正阻尼时会引起持续的振荡,输电线路上的功率也发生相应的振荡。这种振荡的频率很低,范围一般是0.2-2.5Hz,称其为低频振荡[1]。

在互联电力系统中,低频振荡是广泛存在的现象。根据当今电力系统中出现过的低频振荡现象来看,功率振荡的频率越低时,涉及到的机组相对地就越多。研究中,按低频振荡的频率大小和所涉及的范围将其分为两类[2]或者说两种形式。

一种为区域内的振荡模式,涉及同一电厂内的发电机或者电气距离很近的几个发电厂的发电机,它们与系统内的其余发电机之间的振荡,振荡的频率约为0.7-2.0Hz。

另一种为互联系统区域间的振荡模式,是系统的一部分机群相对于另一部分机群的振荡,由于各区域的等值发电机具有很大的惯性常数,因此这种模式的振荡频率要比局部模式低,其频率范围约为0.1-0.7Hz。

关于这两种分类,可以在应用发电机经典二阶模型,并利用小干扰分析法说明低频振荡的过程中,通过讨论机组间的电气距离定性地分析出来,在本文后面的简单数学模型分析中将有说明。

由扰动引发的低频振荡受许多因素的影响,研究认为,当今电力系统发生低频振荡问题大多是由系统的阻尼不足引起。而一般来说,发电机转子在转动过程中受到机械阻尼作用,转子闭合回路、转子的阻尼绕组会产生电气阻尼作用。从互联系统自身来看,系统本身具有的自然正阻尼微弱性是发生低频振荡的内在因素。当然,在电力系统发生低频振荡时,往往是在系统中产生了负阻尼,这种负阻尼效应,使得总体的正阻尼作用减小甚至使系统的阻尼变为负。

研究认为,关于系统产生负阻尼的原因,较为确定的结论[3]有:发电机的励磁系统,尤其是高顶值倍数快速励磁系统会引起系统负阻尼;电网负荷过重时也会使系统阻尼下降;电网互联也可能导致系统的阻尼降低。

2. 简单的数学分析

由上所述,一般负担电压控制、无功功率分配等任务的发电机的励磁系统,在系统中可以提高同步发电机并联运行的稳定性,但它在不装设电力系统稳定器时,会对系统的阻尼造成一定的不利影响,可能引发低频振荡现象。下面将根据文献[1][4][5],以一阶惯性环节表达励磁系统,发电机采用三阶模型,忽略调速器动态,取单机无穷大系统,简单地对这一问题进行说明。下述公式以标么值表示,且均在工作点附近进行线性化,并转化为增量方程。

2.1 简单的数学模型与框图

(1)发电机转子运动方程的增量形式

d0 dt①

T

其中 dPmPeD dt ②

PeK1K2E'

q ③

两个参数值K1和K2均大于零,因为发电机电磁转矩的标么值等于发电机输出功率的标么值,则可以对两个系数做如下的说明。

K1表示在恒定的转子d轴磁链下,转子相位角有小幅变动时所引起的电磁转矩变化的系数,也是E'

q恒定时的同步功率系数。

K2表示在恒定的转子相位角下,d轴磁链发生小的变化时所引起的电磁转矩的变化的系数。

(2)考虑励磁绕组的动态过程,暂态电动势Eq方程的增量形式

通过下面两式

'Td0'dE'qdtEfdEq

'E'

qEq(XdXd)Id

以及发电机经线路jX接到无限大母线的相量图可以推得

'Td0dE'qdtEfd1'EqK4 K3 ④

式中,K3和K4均大于零,K3只与系统内的阻抗参数有关,K4与转子的相位角有关。

(3)发电机的机端电压方程的增量形式

由于要考虑到发电机的励磁系统,所以这一方程是不可少的,可以推得表达式如下:

UGK5K6E'

q ⑤

K5表示恒定的d轴磁链下,转子相位角变化引起的发电机端电压变化的系数,正负与负荷情况有关,K6表示恒定转子相位角情况下,d轴磁链变化引起端电压变化的系数,是正值。

因为这里把励磁系统简化为一个等值的一阶惯性环节,即简化的传递函数为

GeKe, 1sTe

因此也把以上述的①到⑤式转化为其相应的运算形式,并由此得到一个传递函数框图(见下页)。

图1:含励磁系统的状态空间方框图

2.2 稳定性分析

这里利用上面所得框图,简要分析以下三种不同的情形。

(1)首先进行同步发电机的自身特性分析,即不考虑励磁系统的控制作用,并认为Eq的值为零,由此可以得到特征方程为: '

Ts2DsK100

它的根为:

s根据控制理论,所有根必须保证其实部都小于零,才能使系统稳定。因此,这里可以得到基本的结论,同步功率系数K1和阻尼系数D必须大于零,同步发电机才不会失去稳定。

可以看出,当发电机取二阶经典模型,且忽略掉阻尼系数D时,可以得到其固有振荡频率为:

f

对于单机无穷大系统,这时又有 E'UK1cos0 X

可以看出,当X较小时,振荡频率较高。即可以表示系统中机组电气距离小时,相应机组间的振荡频率高;而机组间的电气距离较大时,振荡频率较低。通过这一点,有助于理解上文里所说的分类情况:低频振荡频率较低时,多属于互联系统区域间的振荡,若低频振荡频率较高,在1Hz以上,可认为是本地或区域机组间的振荡模式。

(2)考虑转子相位角变化引起的去磁效果,即取消

Eq为零这一限制,但假设外加励'

磁电压无变化,Efd值为零。

此时,仍可由闭环传递函数得到系统的特征方程,为

s31K1002ss(K1K2K3K4)0 ''K3Td0TTK3Td0

三次方程,比较难解,且不利于用根做判断,采用控制中的劳斯判据,可以得到稳定运行的条件为

K1K2K3K40

K2K3K40

由于K2、K3、K4各自大于零,所以要求同步功率系数K1必须大于零,但此时考虑了E'

q

的变化,总的系数是降低的。

(3)考虑到励磁调节器的作用,励磁调节通过改变Eq使转矩增量发生改变。这时,可以求得系统的特征方程(具体过程参照了文献[5]):

'3TTd0sT('1K10'K6Ge)s2K1Td00sK1K60GeK2K40K2K50Ge0 K3K3

K1>0

K4+KeK5>0同样,利用劳斯判据,得到计及励磁调节后的稳定判据为 K1 −K2K4 +Ke K1K6−K2K5 >03

判据有如下的物理意义:

① 仍然是同步功率系数大于零,通过静稳定分析,可以得到,有按电压偏差比例励磁

调节器时,静稳极限δ可以超过90°;

② 由条件2可以推出,励磁调节器的最大放大倍数(K5<0)

KemaxK4 K5

若自动励磁调节器的放大倍数设定的比这个值高,机组将失去稳定,通过这一点可以解释前面的基本结论,高倍数的快速励磁装置,如不加装电力系统稳定器,将可能导致系统中出现负阻尼,而发生失稳、功率振荡。

③ 通过第三个不等式,可以解出自动励磁调节器的放大倍数的最小值。

3. 低频振荡机理与分析方法

上面进行的简单数学分析可以认为是特征值分析方法的一种体现,其阐述的主要内容也是和负阻尼机理相关的,但是没有体现出分析低频振荡问题时的一般性特点,也没有考虑更加全面的情况。

3.1 低频振荡产生机理

根据各类分析和解决低频振荡的文献,关于低频振荡的产生机理,主要有负阻尼机理、共振或谐振机理、非线性理论(混沌)机理和分歧理论机理。这里重点介绍经典使用价值较

本文来源:http://www.gbppp.com/fw/475794/

推荐访问:低频振荡电路 电网低频振荡

热门文章